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We study percolation with freezing. Specifically, we consider cluster formation via two competing
processes: irreversible aggregation and freezing. We find that when the freezing rate exceeds a certain
threshold, the percolation transition is suppressed. Below this threshold, the system undergoes a
series of percolation transitions with multiple giant clusters (“gels”) formed. Giant clusters are not
self-averaging as their total number and their sizes fluctuate from realization to realization. The
size distribution Fk, of frozen clusters of size k, has a universal tail, Fk ∼ k−3. We propose freezing
as a practical mechanism for controlling the gel size.
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Percolation was originally discovered in the context of
polymerization and gelation [1, 2] and since, it has found
numerous applications in physics [3, 4], geophysics [5],
chemistry [6], and biology [7]. It plays an important role
in a vast array of natural and artificial processes ranging
from flow in porous media [8] and cloud formation [9, 10]
to evolution of random graphs [11, 12], combinatorial op-
timization [13], algorithmic complexity [14], amorphous
computing, and DNA computing using self-assembly [15].

We study percolation using the framework of aggre-
gation. An aggregation process typically begins with a
huge number of molecular units (“monomers”) that join
irreversibly to form clusters (“polymers”). At some time,
a giant cluster (“gel”) containing a finite fraction of the
monomers in the system is born, and it grows to engulf
the entire system. In this classic percolation picture only
a single gel forms, but in many natural and artificial pro-
cesses the system freezes into a non-trivial final state with
multiple gels or even micro-gels [16, 17]. In this study,
we show that aggregation with freezing naturally leads
to formation of multiple gels and that freezing is a useful
mechanism for controlling the gel size.

We analyze a process of aggregation with freezing
where there are two types of clusters: active and frozen.
Active clusters join by binary aggregation into larger ac-
tive clusters. The aggregation rate is proportional to
the product of the two cluster sizes [9, 18, 19]; this is
equivalent to the gelation model of Flory and Stockmayer
where a chemical bond between two monomers joins their
respective polymers [1, 2]. In parallel, active clusters
may become frozen at a size-independent constant rate
α. These frozen clusters are passive: they do not interact
with other (active or passive) clusters.

This process is studied using the rate equation ap-
proach. The density ck(t) of active clusters of mass k
at time t (that is, made up from k monomers) satisfies

dck
dt
=
1

2

∑

i+j=k

(ici)(jcj)−mkck − α ck, (1)

with m(t) the mass density of active clusters. The first
two terms on the right-hand side describe how the cluster
size distribution changes due to aggregation, and the last
term accounts for loss due to freezing. The quantity m(t)
is subtle. Generally, it equals the mass density of all

active clusters including possibly giant clusters, but when
there are no giant clusters, i.e., all clusters are finite in
size, then m(t) ≡ M1(t) with the moments defined via
Mn(t) ≡ 〈k

n〉 =
∑

k≥1 knck(t).

The gelation transition. Initially, all clusters are finite
in size, so m = M1. The moments Mn provide a useful
probe of the dynamics. From the governing equation (1),
the second moment of the size distribution M2 obeys the
closed equation dM2/dt =M2(M2 − α) and thus,

M2(t) = α

[(

α

αc
− 1

)

eαt + 1

]−1

. (2)

There is a critical freezing rate αc = M2(0). For fast
freezing, α ≥ αc, the second moment is always finite
indicating that clusters remain finite at all times. In
this case, there is no gelation. For slow freezing, α <
αc, there is a finite time singularity indicating that an
infinite cluster, the gel, emerges in a finite time [20]. This
gelation time is

tg = −
1

α
ln

(

1−
α

αc

)

. (3)

The gelation point marks two phases. Prior to the
gelation point, the system contains only finite clusters
that undergo cluster-cluster aggregation (“coagulation
phase”). Past the gelation point, the gel grows via
cluster-gel aggregation (“gelation phase”). We analyze
these two phases in order.

Coagulation phase. Coagulation occurs for α ≥ αc at all
times or for α < αc when t < tg. From (1), the mass
density of active clusters satisfies dm/dt = −αm, and
thus, ordinary exponential decay occurs,

m(t) = m(0)e−αt . (4)
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For concreteness, we consider the monodisperse initial
conditions ck(0) = δk,1. In this case Mn(0) = 1 and
consequently, αc = 1. The cluster size distribution is ob-
tained using the transformed distribution, ck = e−αt Ck,
and the modified time variable τ =

∫ t

0
dt′e−αt′ or explic-

itly

τ =
1− e−αt

α
. (5)

This time variable increases monotonically with the phys-
ical time and reaches τ → 1/α as t → ∞. With these
transformations, Eq. (1) reduces to the no-freezing case
dCk/dτ =

1
2

∑

i+j=k(iCi)(jCj)− kCk. From the well-
known solution of this equation [21, 22], the cluster-size
distribution is

ck(t) =
kk−2

k!
τk−1 e−kτ−αt. (6)

Generally, the size distribution decays exponentially at
large sizes and the typical cluster size is finite. The gela-
tion time (3) is simply τg = 1. Of course, no gelation
occurs when α > 1 because τ < 1/α < 1. Otherwise,
as the gelation point is approached, t → tg, the charac-
teristic cluster size diverges k ∼ (tg − t)−2. The gelation
point is marked by an algebraic divergence of the size dis-
tribution ck ∼ (1−α)k−5/2 for large k. We note that the
mass density decreases linearly with the modified time,
m = 1− ατ , and that m(τg) = 1− α.

Gelation phase. Past the gelation transition, a giant clus-
ter containing a finite fraction of the mass in the system
forms. In addition to cluster-cluster aggregation, cluster-
gel aggregation takes place with the giant cluster growing
at the expense of finite clusters. In parallel, all clusters
including the gel may freeze.
Formally, the size distribution (6) generalizes to

ck(t) =
kk−2

k!
τk−1 e−ku−αt (7)

with u(t) =
∫ t

0
dt′m(t′). Statistical properties of the

size distribution are derived from the generating func-
tion c(z, t) =

∑

k≥1 kck(t)e
kz that equals

c(z, t) = τ−1e−αtG(z + ln τ − u) (8)

where G(z) =
∑

k≥1
kk−1

k!
ekz is the “tree” function [23].

During the gelation phase, active clusters consist of
finite clusters, the “sol”, with mass s, and the gel with
mass g with the total mass density, m = s+ g, and these
masses are coupled via the evolution equations

dm

dt
= −αs, (9a)

ds

dt
= −

s(m− s)

1− sτeαt
− α s. (9b)
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FIG. 1: The total mass, the sol mass, and the gel mass versus
modified time τ for α = 1/2. These curves hold as long as
the gel remains active.

The equation governing the total mass reflects that as
long as the gel is active, loss is due to freezing of finite
clusters and the equation for the sol mass follows from
ds/dt = −gM2−αM1, obtained by summing (1). To con-
vert this equation into the explicit Eq. (9b), the first two
moments areM1 = s andM2 = cz(z = 0) = s/(1−sτeαt)
where the identity G′(z) = G/(1−G) [24] was employed.
Equations (9a) and (9b) are subject to the initial con-

ditions m(tg) = s(tg) = 1 − α. Once the masses are
found, the formal solution (7) becomes explicit. Results
of numerical integration of Eqs. (9a) and (9b) are shown
in Fig. 1.
Clearly, the longer the gel remains active, the larger

it grows, but its size can not exceed gmax = limt→∞ g(t)
with the obvious bound gmax < 1− α (Fig. 2). Further-
more, an involved perturbation analysis [25] of Eqs. (9a)
and (9b) yields

gmax →

{

1− π2

6
α α ↓ 0,

C(1− α)2 α ↑ 1;
(10)

with C = 1.303892. The quadratic dependence on the
freezing rate implies that the emerging gel is very small
when α ↑ αc. Thus, micro-gels, that may be practically
indistinguishable from large clusters, emerge. We con-
clude that freezing can be used to control the gel size,
as gels of arbitrarily small size can be produced using
freezing rates just below criticality.

Multiple giant clusters. At any time during the gelation
phase, the gel itself may freeze. This freezing process is
random: the gel lifetime T is an exponentially distributed
random variable, P (T ) = αe−αT . Until the gel freezes,
the system evolves deterministically, so the mass of the
frozen gel is g(tg + T ). When the gel freezes, the total
active massm(t) is discontinuous: it exhibits a downward
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FIG. 2: The maximal gel size gmax and the probability of
producing multiple gels Pmult versus the freezing rate α.

jump (Fig. 3). Given that the duration of the gelation
phase is governed by a random process, the mass of the
frozen gel is also random. It fluctuates from realization
to realization, i.e., it is not a self-averaging quantity.
When the gel freezes, the system re-enters the coag-

ulation phase because all remaining clusters are finite.
The initial conditions are dictated by the duration of the
preceding gelation phase and are therefore also stochas-
tic. Nevertheless, once the initial state is set, the evolu-
tion in the coagulation phase is deterministic. The gel
is frozen so it no longer affects the evolution and only
cluster-cluster aggregation occurs. Let us assume that
the gel freezes at time tf . Reseting time to zero, the first
and the second moments are simply given by Eqs. (4)
and (2), respectively, with Mn(0) replaced by Mn(tf ). A
second gelation occurs if the freezing rate is sufficiently
small, α < M2(tf ). Otherwise, the system remains in the
coagulation phase forever.
Because M2 diverges at the gelation point, there is a

time window past the gelation time where the second mo-
ment exceeds the freezing rate. If the gel freezes during
this window, another percolation transition is bound to
occur. Therefore, there is no upper bound to the num-
ber of frozen gels that may possibly form. Quantita-
tively, the probability that a successive gelation occurs is
Pmult =

∫ t∗−tg

0
dT P (T ) with M2(t∗) = α (Fig. 2); it can

be obtained using perturbation analysis [25]

Pmult →

{

α ln 1
eα α ↓ 0,

0.450851 α ↑ 1.
(11)

In general, this probability is substantial and remarkably,
it is discontinuous at αc.

Cyclic dynamics. The general picture is now clear: the
process starts and ends in coagulation and throughout
the evolution, the system alternates between coagulation
and gelation. Once the initial conditions are set, the be-
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FIG. 3: The mass density m versus time τ . Shown are results
of a Monte Carlo simulation with system size N = 105 and
freezing rate α = 0.1. The system alternates between the co-
agulation phase and the gelation phase. In the former phase
the mass decreases linearly according to (4) such that deple-
tion occurs at time τ = 1/α. In the latter phase, the active
mass decreases slower than linear according to (9a) and (9b).
The gelation phase ends when the gel freezes.

havior throughout the coagulation phase and throughout
the gelation phase are both deterministic. Each gelation
phase ends with freezing of the active gel. Since the du-
ration of the gelation phase is random, the size of the
giant clusters, and the number of giant clusters are both
random variables. Generically, the system exhibits a se-
ries of percolation transitions, each producing a frozen
gel, so that overall, multiple gels are produced. The ran-
dom freezing process governs the number of percolation
transitions as well as the size of the frozen gels.

Discrete Simulation Monte Carlo of the rate equa-
tion (1) confirms this picture (Fig. 3). In the simula-
tions, we keep track the total aggregation rate Ra =
N(M2

1 −M2)/2 and the total freezing rate Rf = αNM0,
where N is the number of particles. Aggregation oc-
curs with probability Ra/(Ra +Rf ), and freezing occurs
with the complementary probability. A cluster is cho-
sen for aggregation with probability proportional to its
size. Time is augmented by ∆t = 1/(Ra+Rf ) after each
aggregation or freezing event.

Frozen clusters. The density of frozen clusters Fk is found
from dFk/dt = αck. By integrating Eq. (6), we find
the density Fk(tg) of clusters produced during the first
coagulation phase (tg ≡ ∞ for α > 1)

Fk(tg) =

{

α
k2·k!

γ(k, k) α ≤ 1,
α

k2·k!
γ(k, k/α) α ≥ 1;

(12)

where γ(n, x) =
∫ x

0
dy yn−1 e−y is the incomplete gamma

function. When α ≥ 1, this quantity equals the final
density of frozen clusters, Fk(∞) = Fk(tg), and at large
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FIG. 4: The size distribution of the frozen clusters for α =
1/2. The simulation results represent an average over 102

independent realizations in a system of size N = 106.

sizes, the behavior is as follows

Fk(∞) '

{

1
2
· k−3 α = 1,

A(α) k−7/2 exp [−B(α)k] α > 1;
(13)

where A = (2π)−1/2α2/(α− 1) and B = α−1 + lnα− 1.
For the case α < 1, numerical simulations provide con-

vincing evidence that the tail behavior

Fk(∞) ∼ k−3, α < 1 (14)

is universal (Fig. 4). Indeed, Eq. (12) shows that the first
coagulation phase contributes Fk(tg) '

α
2
k−3 to Fk(∞)

and similarly, each successive coagulation phase should
contribute the very same k−3 to the tail. Because large
clusters quickly merge into the gel, the gelation phase
yields a negligible contribution, and we conclude that
freezing leads to an additional non-trivial critical expo-
nent γ = 3.
In summary, freezing results in a rich and interesting

phenomenology that includes multiple percolation tran-
sitions and multiple gels, microgels that may be indistin-
guishable from finite clusters, cyclic evolution with the
system constantly alternating between coagulation and
gelation, lack of self-averaging, and an additional non-
trivial critical exponent.
Freezing also provides a practical mechanism for con-

trolling gelation. It may be used to engineer micro-gels
of desired size by implementing variable freezing rates.
Slow freezing followed by rapid freezing can be used to
produce gels of prescribed size, while near-critical freez-
ing produces micro-gels of arbitrarily small size.
There are a number of interesting potential generaliza-

tions of the present work. One may consider situations
with different freezing mechanisms [26], particularly for
finite and infinite clusters. We also solved the Stock-
mayer version where m = M1 always; in this case, there

is no breakdown of self-averaging and the final density
of frozen clusters mimics the critical behavior of active
clusters, Fk ∼ k−5/2. Another natural generalization is
percolation in finite dimensions where the final distribu-
tion of frozen clusters should be an interesting probe of
the dynamics.
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